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Exascale computation as applied to grand challenge problems [I8],[19] in areas like climate, mate-
rials science, and biology will invariably require extensive use of parallel nonlinear solver technology.
However, it is unlikely that present methodologies will be up to the task. Solvers exhibiting high
arithmetic intensity and lightweight global synchronization [I5] will be absolutely key in exploiting
million-way parallelism on heterogeneous compute nodes. In this position paper, we briefly describe
the wider world of nonlinear solution techniques and advocate nonlinear preconditioning and solver
composition [4]. We emphasize that there must be significant research and software effort invested
in nonlinear solver design before exascale machines are practical simulation platforms.

Standard nonlinear solvers cannot be expected to make the jump to exascale. The current best
practice of full Newton linearization and multigrid-preconditioned linear Krylov solver (Newton-
MG) is too dependent on high relative memory bandwidth utilization and blocking synchronous
communication to be viable using any foreseeable technology at the exascale [16].

Previous work on the challenge of solvers at the extreme scale has largely focused on the design
of the linear solvers and preconditioners. There exist pipelined [12] or s-step [I0] variants of
Krylov solvers that amortize global communication. Preconditioners designed for the extreme
scale include hierarchical Krylov methods [I7] that utilize inner Krylov methods on repeatedly
nested subproblems and stabilize global convergence with a flexible Krylov method [3]. Domain
decomposition [I3] and multigrid methods [9] adapted to the extreme scale are also popular choices.

Nonlinear solver design is an attractive next place to look, and the design space is vast and
underexplored. Solving the nonlinear problem at all levels of a nested solver has long been realized
to have many potential advantages [8]. Local nonlinear methods are arithmetically dense and
better suited to the memory hierarchies of modern node-level architectures than equivalent linear
methods. With predicted future architectures incorporating heterogeneous nodes with extensive
vectorization, exploiting locality at the extreme scale will become paramount. However, we are
presently unprepared for what will be required to scale past the current generation of large machines
and therefore must speculate.

Deeply hierarchical solvers are anticipated to be a large part of the transition. Nonlinear solver
hierarchies can be built similarly to nested linear solvers, with block nonlinear preconditioners for
nonlinear Krylov methods. Level-by-level adaptation may be used to maximize performance.

Identifying algorithmic building blocks is an important step towards being able to develop
extreme-scale solvers. Some examples of potential methods one may include:

e Nonlinear Krylov methods generally combine several previous steps into an optimal next
step. This family includes Nonlinear GMRES (NGMRES) [20], Quasi-Newton [14] and others
and have communication patterns similar to linear Krylov methods.

e Nonlinear additive Schwarz methods (NASM) [7] and nonlinear block-Jacobi methods are
a very simple decomposition of a problem into subproblems defined on subdomains.

e Nonlinear fieldsplit may be considered in the same breath as NASM methods, but with the
splitting being into fields rather than subdomains.
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e Full approximation scheme (FAS) is the extension of multigrid to nonlinear problems, with
solution as well as residual represented at each level. Segmental Refinement [I] methods imbue
FAS with extremely lean and localized communication compared to standard multigrid.

e Newton-Krylov may be used as an incredibly effective local solver.

Nonlinear preconditioning is one strategy for formulating globally convergent solvers that treat
the full nonlinear problem at the local level. Analogous to linear preconditioning, nonlinear pre-
conditioning constructs a new solution or a new step direction by considering the action of an inner
nonlinear solver. As with linear preconditioning, there are two choices:

e Right nonlinear preconditioning has the outer method consider only solutions that have been
treated by a nonlinear preconditioner. For instance, NGMRES may be used to optimally com-
bine successive iterations from Newton-Krylov, NASM, or FAS. Right preconditioning is related
to nonlinear elimination [5].

e Left nonlinear preconditioning modifies the outer method’s residual to be the change in solution
generated by the preconditioner. The left-preconditioned residual is a good indicator of the error.
ASPIN [6] is a popular left-preconditioned method.

General nonlinear solver composition provides another set of opportunities for the construc-
tion of scalable solvers. Simple additive composition allows for different solvers to be converged
asynchronously in parallel, with the solutions combined to accelerate global convergence. For ex-
ample, a lot of the parallel shortcomings of Newton-MG may be lessened by truncation or lagging.
One may average between the results of FAS and weakened Newton-MG solutions; outside the
basin of Newton convergence FAS will dominate, with Newton-MG taking over when g-quadratic.
Alternatively, multiplicative composition of FAS and Newton-MG uses one after the other; FAS
“nudges” Newton-MG towards g-quadratic convergence.

Automated solver composition by runtime analysis of a simulation would enable rapid adoption
of efficient hierarchical nonlinear solvers. Parallel nonlinear solvers have all the communication
and load-balancing issues of linear solvers, plus the potential for imbalance arising from varying
nonlinearity. Infrastructure beyond standard load balancing is absolutely key at the exascale [11].
Efficient use of the nonlinear solver building blocks will demand on-the-fly adaptivity. Developing
detailed performance models for nonlinear solvers is also of utmost importance [2].

The challenge of nonlinear solver design at the extreme scale will require new ways of thinking.
Preconditioned nonlinear methods and compositions of nonlinear methods may be flexibly adapted
to suit a particular problem in conjunction with a particular architecture. We should take partic-
ular interest in compositions that include fast multilevel nonlinear algorithms, like FAS, that are
arithmetically intense and potentially asynchronous.

To conclude, we must consider not only new nonlinear solvers, but new patterns of nonlinear solver
design. Issues such as arithmetic intensity, communication patterns, and load balancing will only be
magnified by going to exascale. There are compelling reasons to drop the standard Newton-Krylov
model and look elsewhere in the design space. New parallel nonlinear solver methodologies, possibly
using nonlinear preconditioning and composition, are a research topic that will come to the fore
as the current standard methods fail to scale. Computational science can utilize the extreme scale
only if we push forward the development of nonlinear solvers that conform to both the limitations
and strengths of future high performance computing platforms.
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