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The ability to accurately model complex, interacting physical processes is a key component in developing
insight and understanding across a broad range of scientific and engineering disciplines. The DOE has a
long history as a leader in predictive science by developing world-class simulation tools. These codes
were developed in an era when floating-point operations (FLOPs) were the performance-limiting factor
influencing the choice of the discretization method and the overall design of the numerical algorithm. As
computing architectures are changing from FLOP-centric to data-centric designs, the computing
paradigm on which the codes were designed is being effectively inverted, since the cost of FLOPs is
considerably smaller than the cost of data motion. This is illustrated in Figure 1, where the theoretical
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emerging hardware features due to memory
capacity and bandwidth constraints.
Moreover, this performance gap is projected
to grow with time. Research into code and data transformations on compressible shock hydrodynamics
and diffusion algorithms has shown that perhaps a factor of two improvement of current codes is
possible, but the performance gap cannot be closed.

Figure 1. Peak versus realizable performance for two different
computing architectures

We therefore argue that code optimization of current algorithms will not be sufficient for scalable
performance on future computing architectures. A viable path to extreme parallel computing and
exascale architectures will require fundamental mathematical research in discretization algorithms
and numerical methods, which are designed from inception to take advantage of the data-centric
hardware.

One example illustrating this position is a multi-material shock hydrodynamics discretization method
based on (arbitrarily) high-order curvilinear finite elements, developed under LDRD funding at LLNL.
While high-order methods have a long history and
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the DOE national labs employ classical low-order
schemes to discretize the Arbitrary Lagrangian-
Eulerian (ALE) formulation of fluid dynamics. Recent
research on the Lagrange phase of ALE shows that

Figure 2. High-order finite element Lagrangian simulation
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high-order methods can lead to significant improvements in robustness, accuracy and numerical
conservation of physical quantities. They can also enable previously intractable simulations, such as the
one shown in Figure 2, through highly curved zones and sub-zonal resolution of the shock waves, which
are simply not possible with a low-order method. These improvements come at a cost of additional
FLOPs per element, however the ratio to the required memory (FLOPs/bytes ratio or arithmetic
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points per element). Despite their appeal from
both mathematical and computer science
perspective, the application of high-order finite
elements to coupled multi-physics problems involving ALE hydrodynamics, multi-group radiation-
diffusion and magneto-hydrodynamics (MHD) requires substantial new discretization research in each of
these multi-physics components, as well as in the high-order coupling between them. This is a challenge,
but also an opportunity to improve the quality of the solution, while increasing the arithmetic intensity.
Such high-order finite element research can lead to a new breed of DOE multi-physics codes, which are
well-suited for emerging architectures and expand the state-of-the-art in high-fidelity modeling.

Figure 3. Strong scaling for quadratic (Q2-Q1), cubic (Q3-Q2)
and quartic (Q4-Q3) finite elements

Another example of fundamental mathematical research leading to scalable performance in multi-
physics problems is the development of the Auxiliary-space Maxwell Solver (AMS), which is the first
provably-scalable linear solver for the definite Maxwell systems arising in MHD simulations of
electromagnetic diffusion. This class of matrices has been challenging for traditional solution methods
due to the large nullspace of the curl operator, limiting

the problem resolutions that can be used in practice. o AMS-32 (big)
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space, leading to explicit handling of the curl-related phases up to 125,000 cores (12 billion unknowns)

near-nullspace and reduction of the edge-based problem to several nodal-based problems that can be
treated with classical Algebraic Multigrid (AMG). In practice, AMS has been scaled up to 125K cores (see
Figure 4) and has had a significant impact in large-scale MHD simulations in several major multi-physics
DOE codes, exemplifying how research motivated by the properties of the application and deep
mathematical insight can lead to a more scalable solver.
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