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Discontinuous Galerkin (DG) methods have been extensively developed, analyzed and
applied for convection-dominated partial differential equation (PDE) models in various appli-
cations including computational fluid dynamics, computational electro-magnetism, computa-
tional electronics, computational biology, etc. We refer to, e.g. [4, 6, 12] for more details. The
simplest DG method for solving the transport equation
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is a possibly discontinuity point for functions in the finite element space Vh. The success
of DG methods for various PDEs largely depends on suitable choice of the numerical flux
functions and the resulting stability and accuracy properties of the DG methods thus derived.
Time discretization can be achieved by explicit strong-stability-preserving (SSP) Runge-Kutta
methods [5]. Exascale computing power is needed for simulations in high dimensions, e.g. for
kinetic problems [3]. The DG methods have the following features (some of them are already
explored in the literature, while others are still to be fully investigated), which make them
ideal for exascale computing environments:

(1) DG methods are extremely local and compact. When an explicit time stepping is
adopted, evolution of the polynomial in cell Ij depends only on the polynomials in Ij itself and
in its immediate neighbors (Ij−1 and Ij+1 in the one-dimensional case) through the numerical

fluxes f̂j− 1

2

and f̂j+ 1

2

, regardless of the order of accuracy or the polynomial degree k. The
ratio of communications to local computations is extremely small. This makes DG method
highly efficient in massively parallel environments and in GPUs [1, 11, 9]. This advantage is
more prominent for higher order accurate DG methods, for example in the spirit of spectral
finite element methods. When implicit time stepping must be used because of the need to
relax the time step restriction, efficient preconditioning plus suitable iterative solvers again
retain the advantage of DG in terms of small ratio of the cost of communications to the cost
of local computations.

(2) DG methods are extremely friendly to h-p adaptivity. Arbitrary triangulations with
hanging nodes are allowed for h-adaptivity, and polynomial degrees can be chosen differently
and independently in different cells for p-adaptivity (e.g. [11]). Nonlinear stability proofs
(for example the energy stability for scalar hyperbolic equations [8] and symmetric hyperbolic
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systems [7]) hold for such general h-p adaptive cases. Error estimates for smooth solutions
can also be obtained in such general cases.

(3) DG methods are friendly to multiscale problems or problems with solutions of special
shapes, such as boundary or internal layers. Local non-polynomial or multiscale spaces (such
as oscillatory functions or exponential functions) rather than polynomial spaces can be chosen
for different cells at will. For example, exponential and trigonometric bases are used in [18]
to solve problems with boundary or internal layers and problems with oscillatory solutions.
Special basis based on WKB analysis is used in [15] to solve Schrödinger equation in a resonant
tunneling diode, and special basis based on solutions of suitable cell problems is used in [13]
to solve a class of second order elliptic problems with rough coefficients. Again, most stability
results and error estimates hold for such general cases. For traditional continuous finite
element methods, it is in general very difficult to enforce continuity of functions in the finite
element space containing special basis functions across element interfaces in multi-dimensions.
For discontinuous Galerkin methods this difficulty does not exist.

(4) DG methods are friendly to multi-physics environments. Different PDE models, or even
non-PDE models such as molecular dynamics models, can be used in different domains, and
they can be “glued together” through numerical fluxes in a DG setting. For example, kinetic
models and macroscale moment models in different domains are glued together by discontinu-
ous Galerkin methods, for both gas dynamics equations and semiconductor device simulation
models in [2]. Nonlinear elastodynamics as the continuum description and molecular dy-
namics as another component at the atomic scale in different domains are glued together by
discontinuous Galerkin methods for the multiscale modeling of dynamics of crystalline solids
in [14].

(5) DG methods have redundant information (for example, at cell interfaces, left and
right limits of the numerical solution both approximate the exact solution at this location;
also, for central DG methods [10] there are two polynomials from which we can read values
at any spatial location). This may turn out to be a crucial advantage for error tolerance
in an exascale computing environment in which a small percentage of randomly distributed
processors are expected to malfunction at any given time. We can use one piece of the
redundant information instead of another piece which comes from the malfunctioned processor.
A careful mathematical study on stability and accuracy of such modifications of the DG
algorithm, perhaps in the probability sense, needs to be performed.

(6) Recent developments of DG methods, such as bound-preserving limiters which maintain
accuracy and conservation [19, 20], and treatment of δ-singularities [16, 17], provide more
evidence for the suitability of DG methods in exascale environments for complex physical and
engineering applications. The bound-preserving limiters designed in [19, 20] can maintain
conservation and accuracy, and can mathematically guarantee bound-preserving property of
the numerical solution (e.g. positivity of density and pressure for Euler equations of gas
dynamics). These bound-preserving limiters are especially useful to simulate solutions with δ-
singularities, for other conventional limiters such as minmod type slope limiters severely smear
δ-singularities. One advantage of these bound-preserving limiters is that they are completely
local, namely their implementation is achieved element-wise. Therefore, addition of such
limiters does not affect the efficiency of DG algorithms in exascale environments.
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