
Efficient Temporal Integration at The Exascale
Michael L. Minion

Lawrence Berkeley National Lab and Stanford University

Overview: The development of exascale computers will allow researchers to
run numerical simulations for new classes of problems that are currently out
of reach of the largest machines available. For problems whose mathematical
description is given by a partial differential equation (PDE), exascale comput-
ing will not only enable larger simulations of existing models, but also enable
more physically consistent modeling of applications characterized by multiple
space and time scales and/or multiple physical processes. For such applications,
increased computational power may not alone be sufficient, rather new efficient
parallel algorithms must also be developed both in terms of spatial and tem-
poral discretizations. Iterative temporal integration methods based on deferred
corrections have many appealing characteristics for exascale applications and
provide ample opportunities for mathematical and computational research in
the coming years.

Iterative Temporal Integration Based on Deferred Corrections
Deferred and defect correction methods for ODEs first appeared in the 1960s

(e.g. [1, 2]), but for many years did not enjoy the popularity of Runge-Kutta
or linear-multistep methods. More recently these methods have seen renewed
interest due to several appealing characteristics:

Accuracy: Higher-order spatial discretizations are attractive at the exascale
since fewer degrees of freedom are needed to achieve the same error tolerance
as lower order methods. For PDEs, higher-order spatial discretizations require
higher-order methods in time as well, and spectral deferred correction (SDC)
methods [3] based on Gaussian quadrature rules can easily be constructed to
have very high formal order of accuracy for both stiff and non-stiff equations
with good stability properties.

Flexibility: One of the attractive features of iterative methods like SDC is
that higher-order accuracy is attained through repeated use of lower-order meth-
ods. This provides great flexibility in terms of how the temporal discretization
is designed. In particular, time-marching schemes that treat different terms ei-
ther explicitly or implicitly depending on type [4, 5], or with different time steps
for different terms [6], or even utilizing different numerical codes for different
physical terms [7] have been developed for specific cases.

Parallelizability: With core counts on exascale machines expected to be on
the order of billions, increasing concurrency in PDE simulations while avoiding
low computation to communication ratios is a major challenge. While increasing
the number of spatial degrees of freedom in a PDE simulation can increase the
concurrency, it also typically requires a reduction in time step, leading to longer
run times. Hence the last decade has seen a renewed effort to develop strategies
for time parallelization of ODEs and PDEs (e.g. [8, 9]). Time parallel methods
based on deferred corrections have recently appeared [10, 11, 12, 13]. Very recent
results have shown promise in combining spatial and temporal parallelism on



O(106) cores using the parallel full approximation scheme in space and time
(PFASST) [12].

Resiliency: Iterative temporal integration methods may also be useful for
ensuring resilient temporal integration in the presence of soft and/or hard er-
rors. Since SDC provides explicitly computable residuals in each time step, un-
expected convergence behavior could provide one diagnostic for floating point
error. Another advantage is that if an error is detected, iterative temporal
methods can be restarted from the last known error free iteration rather than
starting from scratch.

Mathematical Challenges
Despite the desirable features outlined above, iterative temporal methods

present a host of unresolved questions requiring mathematical and computa-
tional analysis. Given a particular application, it is not clear how to choose the
most efficient combination of formal order, time-step, and number of iterations.
Furthermore, there may be multiple options for operator splitting, multirate
integration, and multi-level operator coarsening available. In terms of imple-
mentation, some procedures to choose the optimal mix of spatial and temporal
parallelization need to be developed, and these may change dynamically in a
given simulation. In [14] a procedure is introduced that allows the overlap of
communication in PFASST with computation, however this procedure is based
on a highly synchronous model which is unlikely to be realized on exascale ma-
chines. The optimal choices in each instance will clearly be problem dependent,
but mathematical analysis can produce broad guidelines to best exploit a given
architecture.

For PDE simulations, it is possible to construct SDC methods that use a
hierarchy of spatial discretizations within the iterations to reduce the computa-
tional cost. Coarsening can be done by reducing the spatial resolution [15, 12],
which creates a method similar to parallel space-time multigrid [16, 17]. Hence
there is the potential to increase the efficiency of such methods by exploiting
the wealth of experience from the multigrid community (see [18] for recent work
along these lines). More general coarsening strategies based on reducing the
order of spatial operators [15] or floating point precision at coarser levels are
also possible but require careful analysis to determine how and when such an
approach would provide increased efficiency.

A further intriguing possibility to increase the efficiency of time-parallel
methods like PFASST is the use of reduced physical models at coarse levels.
This has been investigated already in the context of parareal [19], and prelim-
inary experiments using PFASST for molecular dynamics have shown promise.
The benefit of this approach is that it allows one to run a high-fidelity simula-
tion in roughly the same wall clock time as a time-serial low-fidelity simulation.
However, success in this approach relies on an understanding of the multi-model
analogs of interpolation and restriction in multigrid methods. These questions
are hence related to the larger field of multi-scale and multi-physics mathemat-
ical models, but require a more tightly coupled hierarchy of models as opposed
to techniques developed for equations with well-separated space and time scales.
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