
mapreduce’s role in mathematics for extreme-scale computing
Paul G. Constantine, David F. Gleich, and Joseph W. Nichols

Position summary. Streaming MapReduce of-
fers an appealing paradigm for designing and
managing data-intensive in-situ processing of
extreme-scale simulations.

Motivation. Current computational fluid dy-
namics simulations produce over 100 TB of flow
field data (see Figure 1) and next-generation
extreme-scale simulations will produce 10s of
PB. Given the expected constraints on future
computing platforms, transfering the complete
data set to disk will be infeasible. Therefore,
common post-processing paradigms for analyz-
ing and visualizing the simulation outputs must
be reimagined. The in-situ paradigm [1] of-
fers a promising alternative that mitigates the
write-to-disk bottleneck. Processing of simu-
lated quantities occurs on the fly with data that
is local to the computation. The processed quan-
tities occupy much less space, and they can be
transfered through the network and written to
disk without a large penalty on efficiency.

One of the primary practical challenges for
the in-situ paradigm is that each analysis task
must be efficiently implemented along with the
physics solver. These analysis tasks—for ex-
ample, computing a far-field spatial correlation
with delay—often involve intricate data move-
ment, local caching, and local storage. Ef-
ficiently implementing such tasks requires de-
tailed knowledge of the network, memory hier-
archy, and computing platform. Application sci-
entists will need help designing in-situ process-
ing for their simulations. Thus, there is a need
for an appropriate abstraction of the in-situ pro-
cessing paradigm that is both accessible to scien-
tists and permits efficient implementation by sys-
tems experts and computer scientists. Streaming
or online MapReduce [2]—a realtime framework
of the MapReduce data-intensive computing in-
vented by Google [3]—is a promising candidate
for such an abstraction.

MapReduce naturally frames the scope of
analyses that can be performed efficiently, and
here we encounter a broad opportunity for

mathematics research. Just as matrix com-
putations has provided the algorithmic frame-
work for expressing scientific computations, in-
situ processing tasks can be expressed as map
and reduce functions applied to the simulated
outputs. Once a task has been expressed in the
MapReduce framework, one can invoke system-
optimized “solvers” without custom implemen-
tation on new computing platforms.

0 400 800 1200
0

2

4

6

8

Cores (Thousands)

S
p

e
e
d

u
p

Ideal

Actual

Figure 1: Nichols’ strong scaling study for large-eddy simu-
lation of jet noise on more than one million processors from
LLNL’s Sequoia BlueGene/Q with 83% efficiency [4].

Background. In 2004, Dean and Ghemawat
published a description of the MapReduce
model [3], which was developed by Google for
data processing on large commodity clusters.
MapReduce arose out of a desire to simplify writ-
ing codes for data analysis tasks at Google. The
idea was to eliminate the need to write error-
prone code for fault-tolerance in scalable data
analysis programs. They devised the MapRe-
duce computational model to fulfill the vast ma-
jority of their existing data analysis needs. The
essential concept of the MapReduce model is
shown in Figure 2. Users provide a map function
that ingests a portion of the data, processes it,
and emits an intermediate key/value pair. In the
shuffle step, values with the same intermediate
key are then collected and sent to a user-defined
reduce function as a key/values pair, which pro-
cesses the collected values and emits a final value.
The advantage of this computational model is
that parallelism and fault tolerance can be pro-
vided by the underlying implementation without
any user code.

Google’s original MapReduce relies on disks
to provide fault-tolerance, rendering it inappro-
priate for fast in-situ analyses. More recent on-

line or streaming MapReduce dynamically for-
wards data from the mappers to reducers. These
data collection and forwarding procedures han-
dle the task of moving relevant pieces of data
from the computation to the statistical analysis
and free users from writing error-prone imple-
mentations. Thus, the user implementing an al-
gorithm need not redesign these same data move-
ment tasks for each and every new simulation.

data
Map

data
Map

data
Map

data
Map

key

value

key

value

key

value

key

value

key

value

key

value

()

Shuffle

key

value

value

dataReduce

key

value

value

value

dataReduce

key

value dataReduce

Figure 2: The MapReduce framework consists of three basic
steps: map, shuffle, and reduce.

MapReduce for in-situ processing. We now
describe how each component of MapReduce re-
lates to in-situ processing; see Figure 3.

Map. This abstraction naturally expresses a
user-defined function that operates on a subset
of the outputs—e.g., a spatial partition of the ve-
locity or pressure—as they are generated by the
simulation. The map functions are instantiated
and run alongside the simulation. The emitted
value is derived from the subset of the outputs—
e.g., a local spatial average—and the associated
key identifies the value with a particular task,
such as study over simulation parameters.

Shuffle. This step—invisible to the
scientist—is where the tuned implementation
seamlessly and efficiently forwards the emitted
key/value pairs across the network. The imple-
mentation must be tuned once for each architec-
ture, which then enables efficient processing of a
wide variety of in-situ analyses.

Reduce. This user-defined function processes
the set of values with a common key as its el-
ements arrive from the shuffle step. Examples
include averaging/interpolating across parame-
ter values or computing two-point covariances.

Once the scientist expresses her in-situ anal-
ysis task as a sequence of map and reduce steps
with the appropriate key/value inputs and out-
puts, then she may take advantage of the opti-

mized implementation with a few lines of code.

Map functions immediately
view the simulation data on the
supercomputer and forward
relevant pieces for analysis.

Reduce functions
process data from
different portions of
the simulation to
compute statistics

Figure 3

Challenges for mathematics research.
There are two major opportunities here for
mathematics research. The first is in the realm
of the analysis, where an applied mathematician
may attempt to answer: (i) Can one compute
the desired quantities using an algorithm that
performs efficiently within the constraints of the
MapReduce framework? (ii) If such an algorithm
is not straightforward, are there algorithms that
compute an approximation that do perform effi-
ciently? (iii) If such approximations exist, what
is the error in these approximations? Similar
questions abound in classical numerical analysis,
e.g., how does one approximate the solution of
a partial differential equation using matrix com-
putations?

The second opportunity for mathematicians
is to aid the systems specialists in implementing
MapReduce on next-generation computing plat-
forms. Network analysis will be a crucial com-
ponent in load balancing and minimizing conges-
tion as key/value pairs are transmitted over the
network to reducers. The role of the mathemati-
cian will be to analyze and optimize communi-
cation patterns given network architectures.

[1] K.-L. Ma, C. Wang, H. Yu, A. Tikhonova, JPCS 78,
012043 (2007).

[2] T. Condie, et al., NSDI2010 (2010), pp. 21–21.
[3] J. Dean, S. Ghemawat, OSDI2004 (2004), pp. 137–150.
[4] http://arstechnica.com/information-technology/2013/01/

how-to-take-advantage-of-a-million-core-supercomputer/.

