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1 Background and Motivation

The DOE mission abounds with complex systems that are modeled as large and difficult-to-solve
stochastic optimization problems, where samples (or scenarios) represent the possible realization
of uncertainty in the model. Usually modeled as coarse-grained sample-based Mixed-Integer Pro-
grams (MIPs) [6], these problems are solved on workstations using generic MIP solvers. Often,
the MIP solvers are unable to find the optimal solution in a reasonable amount of time, and the
implementation of lower-quality solutions results in increased cost and/or increased risk. Consider
the electrical power grid, where the solution to the stochastic version of the unit-commitment
problem is used to determine which generators to schedule and at what production levels. In an
example from [5], the stochastic nature of the problem derives from the unpredictability in demand
and generation from renewable energy sources such as solar and wind; usually a set of plausible
samples is forecasted. The time to optimal solution when using CPLEX, a state-of-the-art generic
MIP solver, grows exponentially as function of the number of samples considered. Even with just
20 scenarios, this problem takes unacceptably long (close to a day) to solve. A scalable, resilient,
extreme-scale sample-based MIP solver will achieve a significant breakthrough in solving difficult
stochastic optimization problems of interest to DOE.

There exist many state-of-the-art generic MIP solvers, the best of which are commercial (CPLEX,
ExpressMP [13], and Gurobi [4]). These codes are highly optimized in many strategies critical to
the performance of MIP solution schemes, representing years of manpower to make these strategies
work synergistically. There are also some parallel implementations of non-commercial generic MIP
solvers, such as ParaSCIP [11] and PICO [8], which scale to around 10k cores. However many re-
cent studies have shown that, for many problem instances, the additional parallelism does not help
much, if at all [7]. As a result, the MIP community has not leveraged the computing power of super-
computing resources. Traditionally, supercomputers have been used to model and simulate physical
systems and not to solve stochastic optimization problems, typically solved on workstations.

We believe there is an enormous opportunity in leveraging the full potential of supercomputing
resources to revolutionize the field of stochastic optimization. This is because generic MIP solvers
do not solve sample-based MIPs efficiently, and because the unique structure of sample-based MIPs
can be leveraged to develop specialized parallel algorithms for stochastic optimization problems.
An approach that holds promise (see further discussion in Section 2) relies on solving surrogate
optimization problems, the Dantzig-Wolfe and Lagrangian relaxations [2], which naturally lend
themselves to parallel solution schemes since they are easily decomposed into subproblems that are
solved iteratively. In this approach, the available parallelism is limited by the amount of compu-
tational resources and not by the number of samples. This is because many relaxations are being
solved simultaneously in the Branch and Bound (B&B) scheme used to solve MIPs, with as many
decomposed subproblems for a particular Dantzig-Wolfe relaxation as the number of samples.

A decomposition-based scheme that successfully leverages massively parallel infrastructures to
solve sample-based MIPs will require innovative advances on two fronts. (1) Theoretical: Many
optimization problems will need to be solved to develop new effective strategies in the B&B scheme
for sample-based MIPs, while ensuring that these strategies maintain the decomposable problem
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structure. (2) Algorithmic: Many challenges posed by extending the algorithms to be exascale-
ready will need to be addressed. This must include solving problems with large sample sets that
are too big to fit on a single core, intelligently interleaving the work from potentially many levels of
parallelism, and resiliency from soft non-catastrophic errors that will become more common [10].

2 Related Work

Generic MIP solvers rely on the strength of a surrogate optimization problem, the Linear Program-
ming (LP) relaxation, which tends to be very weak for sample-based MIPs. Furthermore, the size
of the mathematical formulation of sample-based MIPs grows rapidly as a function of the number
of samples. This often results in problems too big to fit on a single core, which will be exacerbated
on exascale infrastructures, with projections of decreasing memory per core. There are a few MIP
solvers using decomposition-based relaxations, such as GCG [3], BapCod [12] and Dip [9]. However,
none of these are built with parallel implementations in mind, and they do not contain any of the
optimized strategies that are critical to the success of generic MIP solvers. Nevertheless, recent ex-
periments [1,3] are promising, since it leads us to believe that an optimized, parallel implementation
may be quite effective in solving hard sample-based MIPs in a reasonable time frame.

3 Assessment

Challenges Addressed: An effective decomposition-based parallel algorithm that leverages the
computational power of supercomputers to solve sample-based MIPs will require the use of spe-
cial techniques and novel ideas in many areas of optimization, ranging from MIP theory to task
scheduling, and in many areas of parallel programming.

Maturity and Novelty: See discussion in Section 2. We believe that due to their unique structure,
stochastic optimization problems can be efficiently solved using the HPC architectures of the future.
There is much work to be done to make it happen — a naive implementation of decomposition
schemes is known to not work well in practice, and no one has yet built an optimized decomposition
scheme geared towards solving the wide class of stochastic optimization problems.

Uniqueness: The challenges of building an effective decomposition based scheme for sample-based
MIPs are many, and definitely not unique to exascale systems. However, exascale architectures
will bring ever-larger challenges in solving sample-based MIPs using generic MIP schemes. The
structure of sample-based MIPs presents a unique opportunity in building an exascale-ready parallel
framework for solving stochastic optimization problems.

Applicability: As mentioned before, a scalable sample-based MIP solver in not unique to exascale
systems — even current systems will yield immediate benefits. By leveraging HPC architectures in-
telligently, we believe that stochastic optimization problems can be solved in an order-of-magnitude
less wall clock time. In the long term, by designing for exascale and developing algorithms that
work best when run in parallel, we will be able to leverage the computational resources that will
come online in the next few years.

Effort: By focusing on fundamental research on algorithmic and theoretical issues related to solv-
ing sample-based MIPs using parallel algorithms, we can leverage any enhancements (scaling or
otherwise) in generic MIP solvers — every future enhancement improves the effectiveness of a
sample-based MIP solver. On the other hand, building an exascale-ready algorithm for generic
MIPs is much larger in scope and has been the target of a multi-year multiple person effort at
Sandia National Labs (PICO), even at much smaller scale.
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