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Background. Mesoscopic phenomena refer to dynamic states of matter composed of persistent
excitations residing between the atomistic and engineering (macroscopic) scales.
Spatial and temporal averaging at this scale are sufficiently strong so that the state of the material
can be accurately described by continuum phases. The behavior of these phases (e.g.,
magnetization or polarization fields) is governed by PDEs, the so-called phasefield models. The
averaging is too weak, however, to overcome fluctuations, which result in spontaneous rare events
(e.g., magnetic domain flipping) and are modeled as noise of appropriate kind. Fluctuations cause a
violation of local charge neutrality resulting in long-range electrostatic interactions, leading to
locally correlated, but globally heterogeneous evolving structures - domains and interfaces (e.g.,
magnetic domains and domain walls). Mesoscopic theories have been very useful in describing
complex phenomena and predicting their macroscopic consequences in systems as diverse as high-
temperature superconductors, liquid crystals, ferroelectric materials and complex fluids.
Computational mesoscience is increasingly important, but for it to be viable at exascale its inherent
algorithmic challenges must be addressed.
The presence of (i) strong heterogeneities, and (ii) strong fluctuations sets computational
mesoscience apart from the engineering PDE models, which are largely based on smoothly varying
constitutive relations (see, e.g., [1]). Material heterogeneity produces many local minima in the
energy landscape, and fluctuations replace simple relaxation by the relatively rare transitions from
one metastable state to the next. This introduces significant serialization in the time-stepping or
minimization algorithms, which spend most of the time integrating fluctuations about a local
minimum. Furthermore, in order for the implicit solvers to be effective at maximizing the stable
timestep size of the dissipative dynamics driving mesoscopic, optimal multilevel preconditioners
(see, e.g,, [2]). In the presence of strong heterogeneities the construction of effective coarse-grid
problems becomes expensive and can be highly nontrivial.

How should these algorithmic challenges be addressed in the context of future exascale
architectures? These architectures are expected to require increasingly finely-grained parallelism,

algorithmic fault-tolerance, minimization of communication, all in the context of a shrinking
relative memory size and bandwidth. What are the exascale-optimal multilevel preconditioner
constructions for mesoscale models with their strong and evolving heterogeneities? How should
long-range interactions be handled? What are the best methods to capture the fluctuation-induced
rare events? How can the inherently sequential time integration take advantage of the parallelism
of the modern architectures and the exascale hardware? All of these questions have to be
addressed in concert in the context of specific requirements of computational mesoscience.

Position. It is our position that an effective approach to addressing the above challenges can be
based on (i) the statistical nature of mesoscale models, (ii) their homogenization properties,
together with (iii) modern statistical learning methods.

Ensemble simulation. Because the structure of material heterogeneities and fluctuations can only

be known probabilistically, only statistical properties of the system can be reliably observed and
computed. This suggests probing the system using ensembles of simulations to calculate the
statistics of metastable states and transitions between them, increasing available parallelism. The



essential idea is that progress towards the next transition is accelerated if the current metastable
state is sampled in parallel by many realization of the current quasistationary distribution. This is
the approach that was described in [3] and analyzed mathematically in [4]. A similar idea was
proposed earlier in the context of Monte-Carlo relaxation [5], where realizations of multiple nearby
ensembles were used in concert to accelerate convergence. First a set of N independent realizations
of the quasistationary distribution about the current metastable state is prepared. The simulation
can then proceed in parallel until the next transition, sampling the transition events at an N-fold
speedup and affording N-fold parallelism. This offers a potentially critical advantage on modern
architectures where the improvement in the single thread performance may not be as significant as
the increase in hardware thread parallelism.

Homegenization. The construction and application of the coarse-grained operators -- the coarse-
grid problem and the far-field component of long-range interactions -- can remain a substantial
bottleneck in mesoscale simulations. The heterogeneity in mesoscale systems, however, frequently
exhibits a long-range ordering -- its statistics are stationary! with respect to macroscopic spatial
translations. Then, as observed in [6], grid coarsening results in the homogenization of stochasticity,
similar and related to charge screening: the coarse-grained operators are essentially deterministic,
insensitive to ensemble realization exchange. This suggests that while the system remains in the
same quasistationary state, the coarse-grained operators can be frozen and need to be rebuilt only
after the transition. Furthermore, they can be inexpensively reused among the different
realizations of the same or nearby ensembles, and even applied to multiple coarse-grained states at
once, potentially alleviating the memory bandwidth limitations.

Statistical learning. Long-time integration of mesoscale systems can be rather expensive for an
exhaustive probing of their parameter spaces. In the context of uncertainty quantification this is
sometimes addressed by replacing the simulation with a much simpler surrogate model, which
approximates the original behavior learned from a small number of sample simulations. Success of
this approach requires factoring out (e.g., via polynomial chaos expansion) significant correlations
in the heterostructure, leaving a small number of stochastic parameters to sample. While the strong
disorder of mesoscale systems precludes this, we propose to apply this method to the much
smoother coarse-grained problem. In addition to accelerating coarse-grained operator
construction, surrogate models can improve the resilience of exascale mesoscopic simulations,
simplifying their checkpointing and the construction of good initial metastable states. An important
role in the construction of surrogate interpolants may be played by numerical adjoint calculation,
which requires an efficient handling of simulation checkpointing, relating to another important
topic of modern computational mesoscience -- Big Data management and analysis.

Software. Finally, we feel the research ideas outlined above must be implemented as part of existing
solver libraries, such as PETSc [2], and tested on concrete problems. This may require a
considerable redesign of the algorithms and datastructures, strongly coupling them to statistical
samplers, enabling shared solves across ensembles of simulations and incorporating adjoint
calculations in a more fundamental way.

1 0r locally stationary, in the sense that they partition into a small number of approximately stationary
subsets (similar to decision trees).
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