Mathematical Modeling and Discretization for Exascale Simulation

Luis Chacon,
for the Exascale Mathematics Working Group

07/11/2014
Agenda

- Challenges at the exascale
- Exascale computing is all about hierarchies
- Hierarchical models: scale-bridging and coarse graining
- Model coupling and partitioning: accuracy, stability and consistency, solver strategies
- Vlasov-Maxwell: an example
- Other considerations: parallel in time, adaptivity, high-order discretizations
Challenges at the exascale

- While specific architectures are not yet known, exascale computing will bring constraints:
 - **Power consumption**: will limit data motion and memory access
 - **Concurrency**: will favor compute-intensive, data-local algorithms
 - **Memory**: severe bandwidth limitations, better to recompute than to read from memory
 - **Data locality**
 - **Resiliency**: soft and hard faults will be common
Exascale machines will be **hierarchical**

- There will be many levels of parallelism
- Each level of parallelism will bring its constraints, and will require a targeted optimization strategy
 - Each level of parallelism will be best suited for different algorithmic solutions
- The hierarchical nature of the architecture will benefit immensely from hierarchical algorithmic descriptions: **multiscale mathematical models**
Hierarchical algorithms for hierarchical machines: scale-bridging and coarse graining

- Many applications of interest to DOE are multiscale in nature
 - **Tyranny of scales**: many orders of magnitude separation between temporal and spatial scales
- Exascale computing can exploit the tyranny of scales to their advantage, provided a suitable algorithmic solution is available: hierarchical algorithms
- Scale-bridging models and coarse-graining strategies will play a key role at exascale.
- Cutting corners for expediency is not acceptable: models must respect physics.
Scale-bridging algorithms

- One can exploit separation of scales to define a model hierarchy (e.g., via coarse-graining): model partitioning

- Model hierarchies based on separation of scales are a good match for exascale computing:
 - Reliable, less intensive levels of description (macroscopic) are mostly unconstrained
 - Most intensive levels of description (microscopic) dominate cost, and will require careful orchestration at most compute-intensive levels

- Model partitioning is not in conflict with tight nonlinear coupling (e.g., nonlinear enslavement)
Scale-bridging algorithms (II)

- **Coarse-graining** is a natural way to define a model hierarchy:
 - Moment based
 - Homogeneization
 - Renormalization groups
 - Mori-Zwanzig (stochastic PDEs)

- **Different levels** of the hierarchy may require different discretization approaches, e.g.:
 - Continuum for coarse-grained descriptions
 - Particle-based for fine-grained ones (data parallelism, locality, resiliency, operational intensity)
Model coupling and partitioning

- **Strength of coupling** among hierarchy levels depends on **time scale of interest**:
 - Resolving fast time scales will produce non-stiff, weakly coupled systems
 - Stepping over fast time scales will lead to stiff, strongly coupled ones

- When integrating a model hierarchy, **one must consider**:
 - Solution strategy (loose vs. tight coupling)
 - Propagation of numerical errors across hierarchy (asymptotic well posedness, preservation of conservation laws, nonlinear stability)
Model coupling and partitioning: Partitioned algorithms

- Partitioning can be geometric, operational, and model-based
- Partitioning allows modularity, task parallelism, and reduced synchronization, and is a key element in defining a model hierarchy
- Guiding paradigm: “coupled until proven uncoupled”
- Partitioning enables loose coupling, but is not in conflict with tight coupling (e.g., nonlinear enslavement)
Model coupling and partitioning: Nonlinear solution strategies

- Key for **stiff model hierarchies** (i.e., for most scale-bridging algorithms)
- Enable **strict preservation of conservation laws** that depend on coupling across hierarchy levels
- To be **practical at the exascale**, tight coupling strategies will have to be:
 1. Effectively partitioned (e.g., micro, macro)
 2. Less compute-intensive level drives nonlinear residual (most compute-intensive enslaved), to minimize nonlinear solver memory footprint
 3. Effectively preconditioned (e.g., based on less compute-intensive level)
Model coupling and partitioning: Stability and consistency

- As critical as ever, if not more!
- Beyond linear stability: consider **nonlinear stability**
 - Error propagation across levels
 - Preservation of conservation laws (contrains)
 - Asymptotic well-posedness at each level (AP)
- **Consistency:**
 - High-order is preferred
 - AP property critical (typically low order; needs research)
- **Preservation of conservation laws** provide many benefits:
 - Local (e.g., soft-faults) vs. global (e.g., nonlinear stab.)
- Particle and stochastic systems present most open questions
Illustrating model coupling and partitioning:

Vlasov-Maxwell

- **Model hierarchy** (moment coarsening):
 - Coarse-grained: Maxwell + fluid moments
 - Fine-grained: Vlasov equation for multiple species

- **Model partitioning** (tight coupling):
 - Macro fluid system drives nonlinear residual
 - Micro kinetic description is nonlinearly enslaved (auxiliary computation)

- **Model discretization**:
 - Fluid-field system employs Eulerian representation
 - Kinetic description employs particles

- **Hierarchical implementation** (*co-design)*:
 - Fluid system implemented on reliable layers (CPU)
 - Particle orbit integration performed on accelerators (GPU)
Vlasov-Maxwell: Algorithmic benefits

- Algorithmic state of the art is explicit algorithms, in lock step (memory bounded)
 - Draconian stability constraints, both in time step and mesh resolution!
- Implicit, tightly coupled solve implemented via nonlinear enslavement, driven by fluid/field residual
- Orders of magnitude algorithmic speedup (10^3 demonstrated in 1D, >10^6 expected in multi-D)
- Careful co-design cycle renders in in compute-bounded mode, 30% of peak efficiency

Chen et al, CPC, 2014

Chen et al, JPC, 2012
Nonlinear tight coupling enables:
- Absolute stability
- Exact preservation of invariants (charge, energy, canonical momenta; a first)
- Second-order accuracy, with error dominated by slow components of solution (asymptotic preserving)
Unleashing the temporal axis: parallel-in-time approaches

- Sequential aspect of time integration presents a bottleneck
- Need to “open” temporal dimension to iterative treatment
- Many flavors have been explored: parareal (2-level MG), MG-like, SDC-based, etc
Role of high-order discretizations and adaptivity at the exascale

- **High-order discretizations** promote data locality and operational intensity, and are therefore better suited for the exascale.
- **Adaptivity** will keep playing a fundamental role, but with extended “features”:
 - Mesh adaptivity
 - Order adaptivity
 - Model adaptivity
 - Coupling adaptivity
Conclusions

- Exascale computing brings many challenges, but also many opportunities for mathematical exploration
- Algorithms and discrete representations will need to adapt to use these machines
 - Hierarchical architectures will demand hierarchical model descriptions
 - Scale-bridging applications present a significant opportunity
- Exascale computing opens many applied mathematics research questions related to stability, accuracy, asymptotic preservation across levels, and solver strategies